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Motivations for Lattice Field Theory

Lattice field theory is a rigorous way to define quantum field theory, perhaps the only
way. Those who aim to “construct” quantum field theory start with a lattice. Their
problem then starts out mathematically well-defined (see below), and they try (with
the renormalization group) to maintain control over the continuum limit.

Field theory on a lattice is formally the same as classical statistical mechanics. Thus,
it provides a new toolkit to carry out practical calculations. E.g., at long distances
perturbation theory (the high-energy theorist’s favorite tool) breaks down for quantum
chromodynamics (QCD). (Similarly the Standard Higgs sector at short distances.)

Indeed there are several problems in high-energy physics, nuclear physics, and as-
trophysics where non-perturbative information from QCD is needed. Lattice QCD
calculations give matrix elements in B decays, information on proton structure, and
the equation of state as the universe cools from a quark-gluon soup to hadrons.
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Flavor and Hadron-Collider Physics

There are two places in particle physics where lattice calculations are (or will be)
especially important: quark flavor physics and hadron-hadron collisions. Both will
help us infer whether there are new phenomena at play in experiments.

At the right we have a plot of

the theoretical uncertainty in the

gluon density of the proton vs. x.

High mass particles need large x

partons and must be seen above

background.

Moments of such functions can be

calculated in lattice QCD, thereby

constraining the large x behavior.
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Flavor Physics

Lattice QCD calculations will play a more obvious role in quark flavor physics.

Fascinating effects arise from interactions between quarks and the Higgs field.

The Higgs-quark interactions generate quark masses.

They also generate flavor violation: the charged W± bosons couple all up-type quarks
to all down-type quarks.

In in the case of 3 or more generations of quarks, it also generates CP violation, a
necessary ingeredient for generating a baryon asymmetry.

This mechanism is the source of CP violation in the Standard Model. Standard \CP
is probably not enough, and experiments are for other sources.

Let us review how this comes about in the Standard SU(2)×U(1)Y Model.
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Right-Handed Interactions

The right-handed fermions do not couple to W±, and they are singlets under SU(2):

UR= (uR,cR, tR) , YU =
2
3

;

DR= (dR,sR,bR) , YD =−1
3

;

where the hypercharge Y is given.

The gauge and kinetic interactions for G generations of such fields are

LR =
G

∑
i=1

Ēi
R(i/∂−g1YE/B)Ei

R+ D̄i
R(i/D−g1YD/B)Di

R+Ū i
R(i /D−g1YU /B)U i

R,

where B is the gauge boson of U(1)Y, with coupling g1, and Dµ is the covariant

derivative of QCD: quarks are triplets under color SU(3).

Lattice Field Theory 1 Standard Model Andreas S. Kronfeld

4



Left-Handed Interactions

Left-handed fermions do couple to W±; they are doublets under SU(2):

QL =
((

u

d

)
L
,

(
c

s

)
L
,

(
t

b

)
L

)
, YQ =

1
6

.

The SU(2) quantum number is called weak isospin, and the third component I3 dis-
tinguishes upper and lower entries.

The gauge and kinetic interactions for G generations of such fields are

LL =
G

∑
i=1

L̄i
L(i/∂−g1YL/B−g2/W)Li

L + Q̄i
L(i/D−g1YQ/B−g2/W)Qi

L ,

where W = Waσa/2 are the gauge bosons of SU(2), with gauge coupling g2.

Note that as far as gauge interactions are concerned, the generations are simply
copies of each other, with a U(G)3 symmetry.
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Yukawa Interactions

So far these are Laws of Nature, but they are incomplete, because there are now
masses: Lm =−m(ψ̄RψL + ψ̄LψR), for ψ ∈ {e,µ,τ,d,s,b,u,c, t}.

Gauge invariant interactions coupling left- and right-handed fermions need at least
one additional field. The Standard choice is

LY =−
G

∑
i, j=1

[
ŷe
i j L̄

i
LφE j

R+ ŷd
i j Q̄

i
LφD j

R+ ŷu
i j Q̄

i
Lφ̃U j

R+h.c.
]
,

The quantum numbers of φ must preserve SU(2) invariance:

φ =
(

φ+

φ0

)
, YQ =

1
2

; φ̃ ≡ iσ2φ∗ =
(

φ0

−φ−

)
, YQ =−1

2
.

The superscripts denote the electric charge Q = Y + I3.

Verify that the hypercharge assignments are right.
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Higgs Interactions

The scalar Higgs field has these self-interactions:

V(φ) =−λv2φ†φ+λ(φ†φ)2,

with two new parameters, v and λ.

Since v2 > 0, V(φ) takes the shape of a sombrero with minima at all

〈φ〉= ei〈ξa〉σa/2v
(

0

v/
√

2

)
.

The radial components 〈ξa〉 can be gauged away.
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For G generations, the Yukawa matrices are complex G×G matrices. At first glance,
each matrix ŷa seems to introduce 2G2 parameters: G2 that are real and CP con-
serving, and another G2 that are imaginary and, thus, CP violating.

But the residual symmetry reduces the number of physical parameters.

The non-Yukawa Lagrangian is invariant under

DR 7→ RdDR, D̄R 7→ D̄RR†
d ,

UR 7→ RuUR, ŪR 7→ ŪRR†
u ,

QL 7→ SuQL , Q̄L 7→ Q̄LS†
u .

Pick Su and Ru so that S†
dŷuRu = yu is diagonal, real, and non-negative. The combi-

nation S†
uŷdRd is neither real nor diagonal. Instead

S†
uŷdRd = Vyd ,

where yd = S†
dŷdRd is diagonal, real, and non-negative.
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Cabibbo-Kobayashi-Maskawa Matrix

In this process a matrix V = S†
uSd appeared that has physical consequences. It is the

Cabibbo-Kobayashi-Maskawa (or CKM) matrix.

CKM is a G×G unitary matrix. The quarks’ Yukawa interactions now read

LYq=−
G

∑
i, j=1

[
yd

j Q̄
i
LφVi j D

j
R+h.c.

]
−

G

∑
i=1

[
yu
i Q̄i

Lφ̃U i
R+h.c.

]
.

eiϕSu, eiϕRu, and eiϕRd achieve (ϕ → baryon number.) Thus, 3G2−1 parameters
out the 4G2 from the two arbitrary G×G matrices, leaving G2+1.

Of these, 2G are in yu and yd, and the other (G−1)2 are in the CKM matrix V.

1
2G(G−1) are real, CP-conserving parameters;
1
2(G−1)(G−2) are imaginary, CP violating parameters.
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Introducing

QL =
(

UL

VDL

)
,

which diagonalizes the mass terms for the down-like quarks, it is easy to show that

ma
k =

v√
2

ya
kk,

for k = 1,2,3, and a = d,u.

In this basis the CKM matrix migrates to the charged-current vertex:

LŪWD =− g2√
2

[
ŪL/W+VDL + D̄LV†/W−UL

]
,

where W± = (W1∓ iW2)/
√

2.

This basis, with diagonal mass matrices and the CKM matrix in the charged currents
of quarks, is usually adopted in phenomenology.
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Electroweak Decays

The CKM matrix is measured through flavor-changing decays of mesons (and baryons).

Since hadrons are involved, “measurements” of CKM always entail long-distance

QCD properties: =⇒ non-perturbative =⇒ lattice QCD.

There are also many weak processes that occur only in (electrowek) loop diagrams:

mixing, “penguin decays,” etc.

Here there may be competition for the Standard loops: e.g., from superpartners.

These processes are used to probe whether there are (observable) non-Standard

sources of CP violation.
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Quantum Chromodynamics

Quantum chromodynamics (QCD) is the modern theory of the strong interactions: the
force that binds quarks and gluons into hadrons, and, in the end, nuclear physics.

“QCD is easily described.” The Lagrangian has 1+nf free parameters:

LQCD =
1

2g2 trFµνFµν−∑
f

q̄f (/D+mf )qf ,

with gauge coupling (or strong coupling) g2 and quark masses mf .

SU(3): Fµν = [Dµ,Dν], Dµ = ∂µ+Aa
µta

tai j : 3×3 traceless anti-Hermitian matrices, ta† =−ta.

q j
f : transform und 3 representation of SU(3).

Set the parameters with 1+nf experimental measurements; predict everything else.
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Asymptotic Freedom

Renormalized coupling g2(Q) decreases as the momentum scale Q increases:

0

0.1

0.2

0.3

1 10 10
2

µ GeV

α s(
µ)

PDG 2003

⇒ perturbative QCD at short-distances/high energies.

Renormalized QCD remains logically sound at all energies. Cf. QED or SM Higgs.
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Long Distances—Color Singlets

At long distances QCD does not

break down.

Perturbation theory does. =⇒

Quarks and gluons are confined

into color singlets:

mesons q̄i
f q

i
g,

baryons εi jkqi
f q

j
gqk

h,

glueballs FF and FFF ,

hybrids q̄qF,

deuterons, etc.

Non-perturbative methods needed to understand long-distance QCD.
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Non-Perturbative Tools

There are some general purpose tools: unitarity, analyticity, symmetry . . . .

Renormalization group tools: separate long- and short-distance dynamics, solve each
part separately. Or solve one part and take the other from experiment.

Three decades ago, Kenneth Wilson returned from a scientific excursion into con-
densed matter physics. He had taken ideas of renormalization field theory as gifts,
and returned with their tool-kit, including strong coupling expansions.

These tools exploited the formal similarity between the functional integral of quantum
field theory and the partition function of statistical mechanics.

Fields on a lattice are obvious in crystals. The trick was to do the same for gauge
theories such as QCD.
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Lattice Field Theory → Lattice Gauge Theory

Lattice field theory (e.g., for a magnet)

associates the degrees of freedom with

the sites, links, etc., of a lattice.

For particle physics it is a (Euclidean)

space-time lattice.

Wilson’s idea was that the lattice fields

represent aggregate degrees of freedom

of the neighborhood of the sites (etc.).

Mathematical advantages: lattice pro-

vides ultraviolet cutoff from the outset;

functional integral is well-defined.

a

L = N
S
a

L
4 =

 N
4a
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Lattice Gauge Theory

The lattice breaks symmetries—most obviously space-time symmetries such as
Lorentz (or Euclidean) invariance. a2ψ̄γµ∂3

µψ suppressed

It is possible to maintain exact gauge invariance. m2
gAa

µAa
µ forbidden

The key is to find a gauge-covariant difference operator to play the role of ψ̄/Dψ.

The derivative compares the field at point x and (nearby) points y, such as
y = x+ae(µ).

ψ(y)→ g(y)ψ(y), ψ̄(x)→ ψ̄(x)g−1(x)

Suppose we had an object that transforms as

U(x,y) 7→ g(x)U(x,y)g−1(y),

then ψ̄(x)U(x,y)ψ(y) is gauge-invariant.
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From continuum gauge-field theory, we have a suitable object

U(x,y) = Pexp
(R x

y dz·A
)

,

ordered along some path from y to x. Verify U(x,y) 7→ g(x)U(x,y)g−1(y).

These U(x,y)s are often called parallel transporters (by mathematicians) or a Wilson
lines (by physicists).

To maintain gauge invariance, the Lagrangian of lattice gauge theory must be built
out of combinations

ψ̄(x)U(x,y)ψ(y), tr[U(z,z)],

with the parallel transport along (closed) paths on the lattice.

There is no “best” combination. In subsequent lectures, we will discuss several dif-
ferent Lagrangians for lattice QCD, balancing simplicity, theoretical requirements, and
reduced discretization errors.
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Numerical Methods

Most lattice QCD is numerical integration of the functional integral.

The numerical work mystifies many people, but it is easy to learn the basic concepts
using quantum mechanics, as (I hope) you’ve seen in the tutorial.

Consider the propagator in quantum mechanics, with Hamiltonian H = p2/2m+V(x):

〈x(T)|x(0)〉= 〈xT |eiĤT |x0〉= ∑
n
〈xT |n〉eiEnT〈n|x0〉,

To derive the path integral, split the time T into many little intervals δ = T/N. Then

〈xT |e−iĤT |x0〉=
Z N−1

∏
i=1

dxi

N−1

∏
i=0

〈xi+1|e−iĤδ|xi〉,

repeatedly inserting 1 =
R

dxi|xi〉〈xi|.
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We would like to derive an expression for

〈xi+1|e−iĤδ|xi〉 ≈ 〈xi+1|e−iV̂(x)δ/2e−i p̂2δ/2me−iV̂(x)δ/2|xi〉=

e−iV (xi+1)δ/2〈xi+1|e−i p̂2δ/2m|xi〉e−iV (xi)δ/2.

With analysis, this is possible through analytical continuation

〈xi+1|e−p̂2a/2m|xi〉=
√

m
2πa

e−m(xi+1−xi)2/2a.

with a = ε+ iδ, ε → 0+.

For numerical work, the analytical continuation is not feasible. We simply make do

with propagation through imaginary time.

This “Euclidean field theory” is common in mathematical physics, for the same reason.

It is better to work with well-defined expressions, and continue as a last resort.
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Then one has (for imaginary time, T →−iT )

〈xT |e−ĤT |x0〉= lim
N→∞

Z
Dx exp

(
a

N−1

∑
i=0

Li

)
, Dx =

N−1

∏
i=1

dxi

√
m

2πa
,

where the limit is taken with T fixed, a = T/N.

The (discrete time) Lagrangian is

Li =−1
2m

(
xi+1−xi

a

)2
− 1

2V(xi+1)− 1
2V(xi),

which one recognizes as a discrete approximation to the kinetic energy and the aver-
age of the potential energy over two times.

In numerical work, one uses a sequence of Ns and extrapolates.

As we shall discuss in subsequent lectures, one has theoretical control over the ex-
trapolation, even for field theory where issues of renormalization must be addressed.
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Old Pessimism → New Optimism!

It is a good time to take up the study of lattice QCD.

To reduce the computational burden, until now almost all calculations of physically
interesting masses or hadronic matrix elements have been done in the so-called
“quenched approximation.”

This corresponds to omitting all vacuum loops, and compensating the omission with
ad hoc shifts in the bare gauge coupling and masses.

It’s a bit like a dielectric approximation, e2 → e2/ε. One can only hope that it works
when focusing on a narrow range of energies [ε(ω) = constant].

For example, many (of my own) papers include statements like “the nth error bar
comes from the discrepancy in determining mb from ϒ spectrum instead of the B
system.” ‘Twas very unsatisfactory.

Lattice Field Theory 1 Old Pessimism Andreas S. Kronfeld

22



This year, however,

26 authors produced

this plot: =⇒

Set 1+4 free param-

eters with 1+ 4 me-

son masses.

Quenched (on left)

shows discrepancies

as much as 10–15%.

Unquenched QCD

(on right) shows

discrepancies of a

few %—within the

error bars. Davies et al., hep-lat/0304004
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The five fiducial quantities (mϒ(2S)−mϒ(1S), m2
π, m2

K, mDs, and mϒ(1S)) and the nine
shown are all, in a certain sense, “gold-plated.”

The gold-plated class includes stable-particle masses and hadronic matrix elements
with at most one hadron in the initial or final states

Unstable particles and non-leptonic decays inevitably entail multi-particle states—
much more difficult (to be explained later).

This may seem like a disappointing restriction.

There are, however, gold-plated matrix elements for extracting all CKM elements |Vqq′|,
except |Vtb|. (Top quark decays before hadronizing.)

It’s not unrealistic to expect the theoretical uncertainy in the CKM matrix to be reduced
to a few percent in the next 2–3 years.
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The (CKM) Matrix Reloaded

PDG 2003

theoretical uncertainties dominate reduce theoretical uncertainties to a few %

reduce also exp’tal uncertainty in |Vub|
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